Rheostat Re-Wired: Alternative Hypotheses for the Control of Thioredoxin Reduction Potentials
نویسندگان
چکیده
Thioredoxins are small soluble proteins that contain a redox-active disulfide (CXXC). These disulfides are tuned to oxidizing or reducing potentials depending on the function of the thioredoxin within the cell. The mechanism by which the potential is tuned has been controversial, with two main hypotheses: first, that redox potential (Em) is specifically governed by a molecular 'rheostat'-the XX amino acids, which influence the Cys pKa values, and thereby, Em; and second, the overall thermodynamics of protein folding stability regulates the potential. Here, we use protein film voltammetry (PFV) to measure the pH dependence of the redox potentials of a series of wild-type and mutant archaeal Trxs, PFV and glutathionine-equilibrium to corroborate the measured potentials, the fluorescence probe BADAN to measure pKa values, guanidinium-based denaturation to measure protein unfolding, and X-ray crystallography to provide a structural basis for our functional analyses. We find that when these archaeal thioredoxins are probed directly using PFV, both the high and low potential thioredoxins display consistent 2H+:2e- coupling over a physiological pH range, in conflict with the conventional 'rheostat' model. Instead, folding measurements reveals an excellent correlation to reduction potentials, supporting the second hypothesis and revealing the molecular mechanism of reduction potential control in the ubiquitous Trx family.
منابع مشابه
The CXXC motif is more than a redox rheostat.
The CXXC active-site motif of thiol-disulfide oxidoreductases is thought to act as a redox rheostat, the sequence of which determines its reduction potential and functional properties. We tested this idea by selecting for mutants of the CXXC motif in a reducing oxidoreductase (thioredoxin) that complement null mutants of a very oxidizing oxidoreductase, DsbA. We found that altering the CXXC mot...
متن کاملThe CXXC motif: a rheostat in the active site.
The active-site CXXC motif of thiol:disulfide oxidoreductases is essential for their catalysis of redox reactions. Changing the XX residues can perturb the reduction potential of the active-site disulfide bond of the Escherichia coli enzymes thioredoxin (Trx; CGPC) and DsbA (CPHC). The reduction potential is correlated with the acidity of the N-terminal cysteine residue of the CXXC motif. As th...
متن کاملVerapamil in Diabetes
Figure 1: Models of thioredoxin‐interacting protein action: (a) Role of thioredoxin‐interacting protein in the thioredoxin system. Thioredoxin‐interacting protein binds and inhibits the reduced form of thioredoxin, thereby functioning as a rheostat that modulates both redox status and reactive oxygen species‐mediated signaling to regulate metabolism and other cellular processes. (b) Proposed ro...
متن کاملReplacement of threonine-55 with glycine decreases the reduction rate of OsTrx20 by glutathione
Thioredoxins (Trxs) are small ubiquitous oxidoreductase proteins with two redox-active Cys residues in a conserved active site (WCG/PPC) that regulate numerous target proteins via thiol/disulfide exchanges in the cells of prokaryotes and eukaryotes. The isoforms OsTrx23 with a typical active site (WCGPC) and OsTrx20 with an atypical active site (WCTPC) are two Trx h- type isoforms in rice that ...
متن کاملBacteriophage: Time to Re-Evaluate the Potential of Phage Therapy as a Promising Agent to Control Multidrug-Resistant Bacteria
Nowadays the most difficult problem in treatment of bacterial infections is the appearance of resistant bacteria to the antimicrobial agents so that the attention is being drawn to other potential targets. In view of the positive findings of phage therapy, many advantages have been mentioned which utilizes phage therapy over chemotherapy and it seems to be a promising agent to replace the antib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015